Code No.: 16443 AS

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) VI-Semester Advanced Supplementary Examinations, July-2023 Digital Signal Processing

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO	PSO
1.	What is meant by in-place computation in FFT?	2	1	1	1	3
2.	Compute the Circular Convolution of sequences $x_1(n) = \{1, 2, 3\}$ and $x_2(n) = \{2, 1\}$.	2	2	1	2	3
3.	Compare the differences between Hanning and Hamming windows.	2	1	2	1	3
4.	List the desirable characteristics of Windows in FIR filter design.	2	2	2	2	3
5.	What is frequency wrapping effect? How to overcome?	2	1	3	2	3
6.	What is the limitation of impulse invariance transformation method?	2	2	3	2	3
7.	Show that the Up-sampler and Down sampler are time variant Systems.	2	2	4	3	3
8.	What is the importance of filter used in decimation operation?	2	2	4	2	3
9.	What are the advantages of VLIW architecture?	2	2	5	2	3
10.	Write at least four instructions which are supported by. L functional unit.	2	1	5	1	3
	Part-B $(5 \times 8 = 40 \text{ Marks})$					
11. a)	State and prove the following properties of DFT. i) Convolution property ii) Linearity property	4	2	1	2	3
b)	Compute 4-point DFT of the sequence $x(n) = \cos\left(\frac{n \cdot \tau}{2}\right)$ for $0 \le n \le 4$ using DIT-FFT algorithm.	4	3	1	3	3
12. a)	Draw the cost saving realization structure of an FIR system containing impulse response $h(n) = \{1, \frac{1}{2}, \frac{1}{2}, 1\}$.	3	2	2	2	3
b)	The desired frequency response of filter is given by	5	2	2	2	3
	$H_{d}(e^{j\omega}) = \begin{cases} e^{-j3\omega}; \omega \le \frac{3\pi}{4} \\ 0; \frac{3\pi}{4} \le \omega \le \pi \end{cases}$					
	Determine the frequency response of FIR filter, if Harring window is used with N=7.					

13.	Design a digital IIR butterworth filter using bilinear transformation by considering T=1 second to satisfy the following specifications and draw the Direct form-I realization structure for the same.	8	3	3	3	3
	$0.8 \le H(e^{j\omega}) \le 1.0; 0 \le \omega \le 0.4\pi$					
	$ H(e^{j\omega}) \le 0.3; 0.7\pi \le \omega \le \pi$					
14. a)	i) Draw the output spectrum of an Interpolator and explain with the mathematical expression.	4	2	4	2	3
	ii) Explain the importance of filter used in interpolation operation.					
b)	Find the output of the following system. $X(n) = \{1,2,3,4,5,6\}$	4	3	4	3	3
	$x(n) \longrightarrow \uparrow 4 \longrightarrow \downarrow 12 \longrightarrow \uparrow 3 \longrightarrow y(n)$					
15. a)	What are the differences between Von Neumann, Harvard and Modified Harvard architecture?	4	2	5	2	3
b)	Draw and explain Pipeline process of DSP processor and explain the operation.	4	3	5	3	3
16. a)	Let h(n)= {1,1} and x(n)= {3,-1,0,1,3,2} . Find the linear response of the system using Over-lap add method.	4	3	1	2	3
b)	What is the necessary and sufficient condition for achieving linear phase characteristics of an FIR filter? Prove the same.	4	2	2	2	3
17.	Answer any <i>two</i> of the following:					
a)	For an analog transfer function $H(s) = \frac{2}{(s+1)(s+2)}$. Determine $H(z)$	4	3	3	3	3
	using Impulse invariant transformation if T=1 Sec.					
b)	For the given input spectrum, plot the output spectrum $Y(\omega)$.	4	4	4	4	3
	$X(\omega)$					
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
c)	Write the differences between general purpose processors and digital signal processors by mentioning at least four points in each.	4	2	5	2	3

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	36.25%
iii)	Blooms Taxonomy Level – 3 & 4	43.75%
